High-resolution observations of a δ spot hosting a C4.1 flare

S.L. Guglielmino¹, F. Zuccarello¹, P. Romano², A. Cristaldi³⁴, I. Ermolli⁴, S. Criscuoli⁵ AND M. Falco¹

¹Dipartimento di Fisica e Astronomia – Università di Catania, Italy
²INAF – Osservatorio Astrofisico di Catania, Italy
³Dipartimento di Fisica – Università Roma Tor Vergata, Italy
⁴INAF – Osservatorio Astronomico di Roma, Italy
⁵NSO – National Solar Observatory, Sunspot, USA
δ spot generalities

- δ spots
 sunspots with umbrae of opposite polarities inside the same penumbra

- Photospheric properties
 - Strong shear flows are often observed along the PIL of flaring δ spots (Denker & Wang 1998)
 - Curved penumbral filaments, almost tangential to the sunspot umbra: indication of highly twisted (sheared) magnetic field lines

- Many of the strongest flares occur in δ spots (90%, McIntosh 2014)
AR NOAA 11267

An active region containing a δ spot
AR NOAA 11267 – August 6, 2011

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Channel</th>
<th>Spectral points</th>
<th>Pixel size (arcsec)</th>
<th>Time resolution (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SST</td>
<td>CRISTP Fe I 5576 Å</td>
<td>20</td>
<td>0.0592</td>
<td>28</td>
</tr>
<tr>
<td>SST</td>
<td>CRISP Fe I pair 6302 Å</td>
<td>15+15 (pol)</td>
<td>0.0589</td>
<td>28</td>
</tr>
<tr>
<td>SST</td>
<td>Ca II H core and WB</td>
<td>-</td>
<td>0.0338</td>
<td>9</td>
</tr>
<tr>
<td>XRT</td>
<td>Al mesh, Al thick, T poly, Be thick</td>
<td>-</td>
<td>1 – 2</td>
<td>20</td>
</tr>
<tr>
<td>SDO</td>
<td>HMI continuum</td>
<td>-</td>
<td>0.5</td>
<td>720</td>
</tr>
<tr>
<td>SDO</td>
<td>HMI magnetograms</td>
<td>-</td>
<td>0.5</td>
<td>720</td>
</tr>
<tr>
<td>SDO</td>
<td>HMI Dopplergrams</td>
<td>-</td>
<td>0.5</td>
<td>720</td>
</tr>
<tr>
<td>SDO</td>
<td>AIA intensities</td>
<td>304 171 193 335</td>
<td>0.6</td>
<td>12</td>
</tr>
<tr>
<td>Rhessi</td>
<td>3-6 keV; 6-12 keV, 25-50 keV</td>
<td>-</td>
<td>4</td>
<td>- (from 09:00 UT)</td>
</tr>
</tbody>
</table>
At the time of the SST observations AR NOAA 11267 was 2-days old
- Classified as $\beta\gamma\delta$
- 5 C-class flares during its passage across the solar disk
AR NOAA 11267: global properties

- The yellow band indicates the **CRISP** observing period.
- The vertical lines indicate the flares and their magnitude.
- During the time of CRISP observations the **negative** magnetic flux (blue symbols) is in a decreasing phase.
- The **positive** flux is almost constant (red symbols).

The analyzed time interval corresponds to SDO/HMI longitudinal magnetograms acquired from 00:00:00 UT on August 5, 2011 to 23:59:59 UT on August 7, 2011.

SST High-resolution observations + SDO/HMI

Characterization of the plasma properties of the δ spot observed during the post-flare phase
CRISP/SST: data analysis

Indication of the location of up/downward motions along the δ spot PIL

Ca II H: chromosphere (inverted colors)

Motions not related with the chromospheric brightenings: ribbons during the gradual phase of the flare...

Here is the δ spot !!!

--- Part of SST FoV selected for SIR inversion
--- FoV of the figures displayed in the right panel
--- FoV of the zoomed region
CRISP/SST: velocity along the δ spot PIL

- Velocity map obtained from the Gaussian fit of the Fe I 557.6 nm line
- Clear evidence of strong upflows and downflows along the δ spot PIL
- The temporal behavior of the velocity in squares (9 x 9 pixels) A and B are reported in the plot
- The trend reported indicates persistent up/downflows in the regions analyzed
- Velocities measured in squares A and B reach up to +/- 3 km/s
- In SDO/HMI, such LOS motions around the δ spot PIL lasted for almost 15 hours
Maps from SIR inversion of CRISP data

Horizontal velocity field
LCT on Ca II H wideband images

Highly sheared field lines
Analysis of the C4.1 flare observed in the δ spot

Guglielmino et al., in progress

SDO/AIA + SDO/HMI + XRT + Rhessi + SST High-resolution observations
The strongest flare observed during the lifetime of the AR

Timing: 08:37 – 08:47 – 08:51 UT

SST and Rhessi began observations at 09:00 UT
SDO/AIA: the C4.1 flare in NOAA 11267
SDO/AIA: ribbons evolution

- Time slices show asymmetries and delays in the evolution of the flare ribbons

- The extruding structure is first observed in the hottest AIA lines, while in the 211/193/171 lines has a peak simultaneous to a dimming in the 304 line at 09:00 UT

Dimming in the chromosphere
XRT/Hinode: light curves

- **T_decay XRT Be thick = 8.73 sec**
- **T_decay Goes 0.5 – 4 Å = 8.06 sec / Goes 1 – 8 Å = 4.47 sec**
Rhessi and Blue/SST information

red contours: **Rhessi** 3-6 keV
green contours: **Rhessi** 6-12 keV
black contours: **Rhessi** 25-50 keV

yellow contours: **SST Ca II H isophotes**
Blue/SST: evolution during the gradual phase
Conclusions

- Observations of persistent downflows and upflows observed with CRISP (40 minutes) and HMI (15 hours) along the δ spot PIL

- The magnetic field is highly sheared in this region, where a filamentary structure is wrapped around the negative polarity

- AIA observations of the flare occurring in δ spot indicate that:
 - the C4.1 flare originates above the the δ spot PIL
 - three ribbons are formed, with a Y-shaped structure

- Time slices show a dimming in the chromosphere after the flare

- The bulk of the X-ray emission seems to be located near the crossing point of the Y-shaped structure

- These results have to be compared with the thick target model
This research work has received funding from the European Commission’s Seventh Framework Programme under the Grant Agreements no. 606862 (F-Chroma project).